ON THE HARMONIC OSCILLATOR REALISATION OF q-OSCILLATORS

D.Gangopadhyay, A.P.Isaev

The general version of the bosonic harmonic oscillator realisation of bosonic q-oscillators is given. It is shown that the currently known realisation is a special case of our general solution.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

О реализации q-осцилляторов гармоническими осцилляторами

Д.Гангопадья, А.П.Исаев

Получено общее представление для бозонных q-осцилляторов в терминах обычных бозонных осцилляторов. Показано, что известное до сих пор представление получается как частный случай из нашего общего решения.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Recently, there has been much interest in quantum Lie algebras which first appeared in the investigations of the quantum inverse scattering problem while studying the Yang — Baxter equations 1 . These quantum algebras can be considered as a "deformation" of the Lie algebra with the numerical deformation parameter s or $q = e^S$, such that the usual Lie algebra is reproduced in the limit $s \to 0$, i.e. $q \to 1$. It has been shown that this structure essentially connects with quasi-triangular Hopf algebras and its generalisation to all simple Lie algebras has been given $^{1/2}$. There also exists the quantum generalisation of the Jordan-Schwinger mapping for $su(2)_q$ algebra $^{1/3}$. Moreover a q-oscillator realisation of many other quantum algebras has also been obtained $^{1/4}$. In ref.4 a harmonic oscillator representation of the q-oscillators was also given. The motive of this paper is to show that the harmonic oscillator realisation of the q-oscillators admits a more general solution than the one currently in vogue $^{1/4}$.

The basic equations characterising the q-deformed bosonic oscillator system are

$$aa^{+} - qa^{+}a = q^{-N}, N^{+} = N,$$
 (1)

$$[N, a] = -a, Na = a(N-1),$$
 (2)

$$[N, a^{+}] = a^{+}, Na^{+} = a^{+}(N+1),$$
 (3)

where a, a⁺ are annihilation and creation operators and N is the number operator.

Consider the case when q is complex. Then (1) implies

$$aa^+ - q^*a^+a = (q^*)^{-N}$$
. (4)

So from (1) and (2) we get

$$a^{+}a = \frac{q^{-N} - (q^{*})^{-N}}{q^{*} - q}.$$
 (5)

Multiplying (5) by a and then commuting a to the right in the righthand side term we obtain

$$a a^{+} = \frac{q^{-N-1}(q^{*})^{-N-1}}{q^{*}-q}.$$
 (6)

Substituting (5) and (6) in (1) then gives

$$q^{-N}(q^* - q^{-1}) = (q^*)^{-N}(q - (q^*)^{-1}).$$
(7)

Now taking $q = |q|e^{i\alpha}$, $q^* = |q|e^{-i\alpha}$ and putting these in (7) we have

$$e^{-i\alpha(N+1)}(|q| - \frac{1}{|q|}) = e^{i\alpha(N+1)}(|q| - \frac{1}{|q|}).$$
 (8)

Equation (8) has two solutions

$$|q| = \frac{1}{|q|}$$
 i.e. $|q| = 1$ (9a)

and

$$e^{-2 i\alpha(N+1)} = 1$$
 i.e. $\alpha = \frac{\pi}{N+1} m$ (9b)

with m being some integer. The second solution is not appropriate for us as we consider q as a number and not as an operator. Let us take the first solution (9a) viz. $q = e^{i\alpha}$. Then eqs. (5) and (6) can be rewritten as

$$a^+a = [N], aa^+ = [N+1],$$
 (10)

where $[x] = (q^x - q^{-x})/(q - q^{-1})$. It is straightforward to verify that (10) is indeed a solution of (1) even if q is real.

Let us address ourselves to determining the representation of the operators a and a in terms of ordinary oscillators a, a described by

$$[\hat{a}, \hat{a}^{+}] = 1, \hat{N} = \hat{a}^{+}\hat{a} = \hat{a}\hat{a}^{+} - 1,$$

 $[\hat{N}, \hat{a}] = -\hat{a}, [\hat{N}, \hat{a}^{+}] = \hat{a}^{+}.$ (11)

where \hat{N} is the usual number operator. We now find the solutions for a, a^+ and N satisfying equations (1), (2) and (3) together with

$$[\hat{N}, N] = 0, [\hat{N}, a] = -a, [\hat{N}, a^{+}] = a^{+}.$$
 (11b)

From (11b) one immediately has

$$N = \Phi(q, \hat{N}), a = \hat{a}f(q, \hat{N})$$
 (12a)

with Φ and f some arbitrary functions at this moment. Reality of f and (12a) then give

$$a^{+} = f(q, \hat{N}) \hat{a}^{+}.$$
 (12b)

Substituting (12) in (1) yields

$$f^{2}(q, \hat{N} + 1) (\hat{N} + 1) - q f^{2}(q, \hat{N}) \hat{N} = q^{-\Phi(q, \hat{N})} = q^{-N}$$
 (13)

With $q = e^s$ this means

$$\Phi(q, \hat{N}) = -\frac{1}{s} \ln[f^{2}(q, \hat{N}+1) (\hat{N}+1) - qf^{2}(q, \hat{N}) \hat{N}]. \qquad (14)$$

Now from (2) and (3) we have

$$q^{-N}a = a q^{-N+1},$$
 (15a)

$$q^{-N}a^{+} = a^{+}q^{-N-1}$$
 (15b)

Putting equation (13) in (15a) results in the functional equation

$$F(q, \hat{N}) (\frac{1}{q} + q) - F(q, \hat{N} - 1) - F(q, \hat{N} + 1) = 0,$$
 (16)

where $F(q, \hat{N}) = f^2(q, \hat{N})\hat{N}$. The same equation is also obtainable from (15b).

In order to solve eq.(16) for $F(q, \hat{N})$ note that

$$F(q, \hat{N}) \rightarrow \hat{N} \tag{17}$$

for $s \to 0$ or $q \to 1$. This is simply because $f(q, \hat{N}) \to 1(a \to \hat{a})$ when $q \to 1$. Hence, we have the following systems of equations:

$$(q + \frac{1}{q}) F(q, N) - F(q, N-1) - F(q, N+1) = 0,$$
 (18a)

$$F(1,N) = N, \quad \Phi(1,\hat{N}) = \hat{N},$$
 (18b)

$$F(q, \hat{N} + 1) - qF(q, \hat{N}) = q^{-\Phi(q, \hat{N})} = q^{-N}$$
 (18c)

The last of these equations is essentially equation (13). From (18c) we have

$$F(q,1) = qF(q,0) + q^{-\Phi(q,0)}.$$
 (19)

From (18a) and (19) we get

$$F(q, 2) = q^2 F(q, 0) + (q + q^{-1}) q^{-\Phi(q, 0)}$$

A little algebra then leads to the general term

$$F(q, N) = q^{N}F(q, 0) + [N] q^{-\Phi(q, 0)}.$$
 (20)

It is readily verified that (20) satisfies (18a). Hence (20) is the solution of (18a) for arbitrary F(q, 0) and $\Phi(q, 0)$. Moreover, note that if F = F(q, N) is a solution of (18a), then F = F(q, N) is also a solution.

It is by now obvious that we may write the general solution as

$$F(q, N) = \frac{q^{N}\Phi_{1}(q) - q^{-N}\Phi_{2}(q)}{q - q^{-1}},$$
 (21)

where $\Phi_{1,2}$ are arbitrary functions with the restriction that $\Phi_{1,2}(1) = 1$. Then, using $F(q, \hat{N}) = f^2(q, \hat{N})\hat{N}$ we arrive at

$$f(q, N) = \sqrt{\frac{q^{\hat{N}}\Phi_1 - q^{-\hat{N}}\Phi_2}{\hat{N}(q - q^{-1})}}$$

so that

$$a = \hat{a} \sqrt{\frac{(q^{\hat{N}} \Phi_1 - q^{-\hat{N}} \Phi_2)}{\hat{N}(q - q^{-1})}}, \quad a^+ = \sqrt{\frac{(q^{\hat{N}} \Phi_1 - q^{-\hat{N}} \Phi_2)}{\hat{N}(q - q^{-1})}} \hat{a}^+$$

$$N = \hat{N} - \frac{1}{S} \ln \Phi_2. \tag{22}$$

That the solutions (22) satisfy all the fundamental relations may be easily established. Choosing $\Phi_1 = \Phi_2 = 1$ gives the presently known realisation $^{/4/}$.

Thus we prove that taking into account the additional conditions (11b), the representation (22) is the most general.

A similar analysis for fermionic q-oscillators leads to the known result b = b, $b^+=\hat{b}^+$, and M=M after imposing the requirement $M=M^2$ for the number operator.

It is our pleasure to thank A.T.Filippov and J.Lukierski for enlightening discussions.

References

1. Faddeev L.D. — In: Les Houches Lectures 1982, North-Holland, Amsterdam, 1984;

Kulish P., Sklyanin E.K. — Lect. Notes is Physics V151, Springer, Berlin, 1982, p.61;

Kulish P., Reshetikhin N.Yu. — Zap.Nauk.Semin, 1981, LOMI101, p.101; Journ.Sov.Math., 1983, 23, p.2435;

Sklyanin E.K. — Funk. Anal. Appl., 1982, 16, p.27; 1983, 17, p.34.

2. Drinfeld V.G. — In: Proceedings of the International Congress of Mathematicians, Berkley, vol.1, 1986, p.198 (AMS, 1986);

M.Jimbo — Lett.Math.Phys., 1985, 10, p.63; ibid., 1986, 11, p.247; Comm.Math.Phys., 1987, 102, p.537;

Woronowicz S.L. — Comm. Math. Phys., 1987, 111, p.613;

Manin Y.I. — In: Quantum Groups and Non-Commutative Geometry, Centre de Recheres Mathematiques, Montreal, 1988,

- Mac Farlane A.J. J.Phys., 1989, A22, p.4581;
 Biedenharn L.C. J.Phys., 1989, A22, p.L873;
 Sen C.P., Fu H.C. J.Phys., 1989, A22, p.L983.
- 4. Polychronakos A.P. A Classical Realisation of Quantum Algebras, Univ. of Florida preprint HEP-89-23, 1989;

Kulish P.P., Damaskinsky E.V. — J.Phys., 1990, A23, p. L415; Floreanini E., Spiridonov V.P., Vinet L. — Phys.Lett., 1990, B242, p.383;

Floreanini R., Spiridonov V.P., Vinet L. — q-Oscillator Realisations of the Quantum Superalgebras $sl(m,n)_q$ and $osp(m,2n)_q$, preprint UCLA-90-TEP21.

Chaichian M., Kulish P. – Phys.Lett., 1990, B234, p.72;
 Chaichian M., Kulish P., Lukierski J. – Phys.Lett., 1990, B237, p.401.