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ON THE HARMONIC OSCILLATOR REALISATION
OF q-OSCILLATORS

D.Gangopadhyay, A.P Isaev

The general version of the bosonic harmonic oscillator realisation of
bosonic g-oscillators is given. It is shown that the currently known
realisation is a special case of our general solution.

The investigation has been performed at the Laboratory of
Theoretical Physics, JINR.

O peanu3ainuy q-oCHUAIATOPOB rapMOHHUYECKHMH
OCILMJUIATOPAMH

J.Tauronamea, A.I1.Ucaes

IonyyeHo oOumtee mpepcraBneHue A GO3OHHBIX G-OCLMIUIATOPOB
B TepMHHax oGbIuHBIX Go30HHBIX ocuwinaropoB. IloxasaHo, uto H3-
BEeCTHOE [0 CHX NOp NpeACTaBJIieHHe MOJYMAaeTCA KaK YacTHBbIH CiTyyai
M3 Halliero o61ero pelueHns.

Pabota BrinonHeHa B JlaGopatopun reopernveckoit dpusuxu OUAH.

Recently, there has been much interest in quantum Lie algebras
which first appeared in the investigations of the quantum inverse scat-
tering problem while studying the Yang — Baxter equations’3/ . These
quantum algebras can be considered as a deformation’ of the Lie al-
gebra with the numerical deformation parameter s or q = ¢S, such that
the usual Lie algebra is reproduced in the limit s+ 0,i.e. q » 1. It has
been shown that this structure essentially connects with quasi-trian-
gular Hopf algebras and its generalisation to all simple Lie algebras
has been given/2/ . There also exists the quantum generalisation of
the Jordan-Schwinger mapping for su(2)q algebra/ 8/ . Moreover
a qg-oscillator realisation of many other quantum algebras has also been
obtained %%/, In ref.4 a harmonic oscillator representation of the
g-oscillators was also given. The motive of this paper is to show that
the harmonic oscillator realisation of the g-oscillators admits a more ge-
neral solution than the one currently in vogue/ 4

The basic equations characterising the g-deformed bosonic oscilla-
tor system are »
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aat - qata =q”N N*-=N, (1)
[N,a] = -a, Na =a(N-1), (2)

[N, a'] =a", Na' =a (N+1), (3)

where a, a’ are annihilation and creation operators and N is the number

operator,
Consider the case when q is complex. Then (1) implies

*x *»*
aat -q a'a =(q )N (4)

So from (1) and (2) we get
-N_(q*)-N
ata = 3 @) ' (5)
q* -q '
Multiplying (5) by a'and then commuting a to the right in the right-
hand side term we obtain
~N-1, ¢y-N-1
aat -4 - q*) . 6)
q*-q

Substituting (5) and (6) in (1) then gives

aNe* -q) =(¢*) Mg -@»)hH. ‘ (7

Now taking q=iqle!® | q* = iqle”® and putting these in (7)
we have
-4 1 1 tot )
gl ) - LoyetaNe(yqy - L, (8)
lqi lal
Equation (8) has two solutions

la = 2 je. lq =1 (9a)
lal

and

~2ia(N+1) _q ie. a = 9b

e ie. a = om (9b)

with m being some integer. The second solution is not appropriate for us
as we consider q as a number and not as an operator. Let us take the first
solution (9a) viz. ¢ =e'%. Then egs. (5) and (6) can be rewritten as
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ata =[ N], aat =[N+1]}, (10)

where [x] =(q*-q™/@q -q¢ Y. Itis straightforward to verify that
(10) is indeed a solution of (1) even if q is real.

Let us address ourselves to determining the representation of the
operators a and a* in terms of ordinary oscillators a, a* described by

~ o~ -~

(a, a*] =1, N = ata = aat -1,
(11)

~

[N, a] = -a, [N, at] =2"™

—

where & is the usual number operator. We now find the solutions for a,
a* and N satisfying equations (1), (2) and (3) together with

[f\}n N] = Ol [I\?g ‘] ="a' [f\},a+] = a+- (llb)
From (11b) one immediately has
N = (D(Qt ﬁ)l a = ;f(qn l’\}) (12&)

with @ and f some arbitrary functions at this moment. Reality of f
and (12a) then give

a*t - f(q, N)a*. ~ (12b)

Substituting (12) in (1) yields

%, N ) Qe 1) -qrd@, N = ¢ @D (13)
With q = e® this means

0@, M) = - = e, N+ 1) Re1) ~at¥q, M) NI (14)
Now from (2) and (3) we have

N —aqN+1, | (15a)

qNat —atq~N-1  (15b)

Putting equation (13) in (15a) results in the functional equation

F(q, N) (% + Q) -F(q,N-1) ~F(q, N+1) =0, (16)
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where F(q, N) = fg(q, N)N. The same equation is also obtainable from
(15b).
In order to solve eq.(16) for F(q, N) note that

F(q, N) - N _ : am

for s » 0 or g~ 1. This is simply because f(q, ﬁ) +1(a ~a )} when q ~ 1.
Hence, we have the following systems of equations:

(q+-(‘;)F(q.N)—F<.q.N—1)-F<q.N+1)_=o, (18a)
F(t,N) =N, @@,N)-=N, (18b)
F(q,N+1) - qF(q, N) =q 2 ¢@ N g™, (18¢)

The last of these equations is essentially equation (13). From (18c)
we have

F(q,1) = qF(q,0) + ¢ 20, : (19)
From (18a) and (19) we get
F(q,2) =q2F(q, 0) +(q +q 1 ¢~%@

A little algebra then leads to the general term

F(q,N) =q"F(q, 0) + [Nl ¢ @2, (20)

It is readily verified that (20) satisfies (18a). Hence (20) is the
solution of (18a) for arbitrary F(q, 0) and @ (q, 0). Moreover, note
that if F =F(q, N) is a solution of (18a), then F = F(q, —N) is also
a solution.

It is by now obvious that we may write the general solution as

a0y @) -a N, (@)
F(q,N) = , (21)
q-qt

where (I)l o are arbltrary functions with the restriction that @, (1) =
=1. Then, using F(q, N) = £¥(q, N)N we arrive at

;Iq; - —N-q;
r(q.N)=,/cl 13 e
R(q-qh
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so that

/(q @, - q‘Ndﬂg) /(qN¢1 -q Ndag) .t
a
N(Q-— N(q-q71)
N-L
N=N 5 lne,. (22)

That the solutions (22) satisfy all the fundamental relations may be
easily established. Choosing ¢, = ®, =1 gives the presently known
realisation’ ¥/

Thus we prove that taking into account the additional conditions
(11b), the representation (22) is the most general.

A similar analysis for fermionic g-oscillators leads to the known
result b =b, b*= b+ and M = M after imposing the requirement M= M2
for the number operator.

It is our pleasure to thank A.T.Filippov and J.Lukierski for enligh-
tening discussions.
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